Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Neuroscience ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38453129

RESUMEN

Ischaemic stroke is a major cause of morbidity and mortality worldwide. Blood clotting and thromboembolism play a central role in the pathogenesis of ischaemic stroke. An increasing number of recent studies indicate changes in blood clot structure and composition in patients with ischaemic stroke. In this review, we aim to summarise and discuss clot structure, function and composition in ischaemic stroke, including its relationships with clinical diagnosis and treatment options such as thrombolysis and thrombectomy. Studies are summarised in which clot structure and composition is analysed both in vitro from patients' plasma samples and ex vivo in thrombi obtained through interventional catheter-mediated thrombectomy. Mechanisms that drive clot composition and architecture such as neutrophil extracellular traps and clot contraction are also discussed. We find that, while in vitro clot structure in plasma samples from ischaemic stroke patients are consistently altered, showing denser clots that are more resistant to fibrinolysis, current data on the composition and architecture of ex vivo clots obtained by thrombectomy are more variable. With the potential of advances in technologies underpinning both the imaging and retrieving of clots, we expect that future studies in this area will generate new data that is of interest for the diagnosis, optimal treatment strategies and clinical management of patients with ischaemic stroke.

2.
J Thromb Haemost ; 22(2): 379-393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37832789

RESUMEN

BACKGROUND: The characterization of inherited mild factor XIII deficiency is more imprecise than its rare, inherited severe forms. It is known that heterozygosity at FXIII genetic loci results in mild FXIII deficiency, characterized by circulating FXIII activity levels ranging from 20% to 60%. There exists a gap in information on 1) how genetic heterozygosity renders clinical bleeding manifestations among these individuals and 2) the reversal of unexplained bleeding upon FXIII administration in mild FXIII-deficient individuals. OBJECTIVES: To assess the prevalence and burden of mild FXIII deficiency among the apparently healthy German-Caucasian population and correlate it with genetic heterozygosity at FXIII and fibrinogen gene loci. METHODS: Peripheral blood was collected from 752 donors selected from the general population with essentially no bleeding complications to ensure asymptomatic predisposition. These were assessed for FXIII and fibrinogen activity, and FXIII and fibrinogen genes were resequenced using next-generation sequencing. For comparison, a retrospective analysis was performed on a cohort of mild inherited FXIII deficiency patients referred to us. RESULTS: The prevalence of mild FXIII deficiency was high (∼0.8%) among the screened German-Caucasian population compared with its rare-severe forms. Although no new heterozygous missense variants were found, certain combinations were relatively dominant/prevalent among the mild FXIII-deficient individuals. CONCLUSION: This extensive, population-based quasi-experimental approach revealed that the burden of heterozygosity in FXIII and fibrinogen gene loci causes the clinical manifestation of inherited mild FXIII deficiency, resulting in ''unexplained bleeding'' upon provocation.


Asunto(s)
Deficiencia del Factor XIII , Factor XIII , Hemostáticos , Humanos , Factor XIII/genética , Deficiencia del Factor XIII/diagnóstico , Deficiencia del Factor XIII/genética , Fibrinógeno/genética , Hemorragia/diagnóstico , Hemorragia/genética , Estudios Retrospectivos
3.
J Clin Med ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762789

RESUMEN

Acute lung injury in COVID-19 results in diffuse alveolar damage with disruption of the alveolar-capillary barrier, coagulation activation, alveolar fibrin deposition and pulmonary capillary thrombi. Nebulized recombinant tissue plasminogen activator (rt-PA) has the potential to facilitate localized thrombolysis in the alveolar compartment and improve oxygenation. In this proof-of-concept safety study, adults with COVID-19-induced respiratory failure and a <300 mmHg PaO2/FiO2 (P/F) ratio requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care, between 23 April-30 July 2020 and 21 January-19 February 2021, respectively. Matched historical controls (MHC; n = 18) were used in C1 to explore efficacy. Safety co-primary endpoints were treatment-related bleeds and <1.0-1.5 g/L fibrinogen reduction. A variable dosing strategy with clinical efficacy endpoint and minimal safety concerns was determined in C1 for use in C2; patients were stratified by ventilation type to receive 40-60 mg rt-PA daily for ≤14 days. Nine patients in C1 (IMV, 6/9; NIRS, 3/9) and 26 in C2 (IMV, 12/26; NIRS, 14/26) received nebulized rt-PA for a mean (SD) of 6.7 (4.6) and 9.1(4.6) days, respectively. Four bleeds (one severe, three mild) in three patients were considered treatment related. There were no significant fibrinogen reductions. Greater improvements in mean P/F ratio from baseline to study end were observed in C1 compared with MHC (C1; 154 to 299 vs. MHC; 154 to 212). In C2, there was no difference in the baseline P/F ratio of NIRS and IMV patients. However, a larger improvement in the P/F ratio occurred in NIRS patients (NIRS; 126 to 240 vs. IMV; 120 to 188) and fewer treatment days were required (NIRS; 7.86 vs. IMV; 10.5). Nebulized rt-PA appears to be well-tolerated, with a trend towards improved oxygenation, particularly in the NIRS group. Randomized clinical trials are required to demonstrate the clinical effect significance and magnitude.

4.
Cancers (Basel) ; 15(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627051

RESUMEN

The Arg-Gly-Asp (RGD)-binding family of integrin receptors, and notably the ß3 subfamily, are key to multiple physiological processes involved in tissue development, cancer proliferation, and metastatic dissemination. While there is compelling preclinical evidence that both αvß3 and αIIbß3 are important anticancer targets, most integrin antagonists developed to target the ß3 integrins are highly selective for αvß3 or αIIbß3. We report the design, synthesis, and biological evaluation of a new structural class of ligand-mimetic ß3 integrin antagonist. These new antagonists combine a high activity against αvß3 with a moderate affinity for αIIbß3, providing the first evidence for a new approach to integrin targeting in cancer.

6.
Semin Thromb Hemost ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072020

RESUMEN

For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa in vivo. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.

7.
J Thromb Haemost ; 21(4): 814-827, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36990522

RESUMEN

BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.


Asunto(s)
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Factor XIIa/metabolismo , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/metabolismo , Albúminas , Productos Finales de Glicación Avanzada
8.
Res Pract Thromb Haemost ; 6(4): e12715, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647477

RESUMEN

Background: Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa). Objectives: The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences. Methods: Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa. Results/Conclusions: We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.

9.
ACS Med Chem Lett ; 13(2): 171-181, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178172

RESUMEN

The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.

10.
Elife ; 102021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633287

RESUMEN

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.


Asunto(s)
Coagulación Sanguínea/fisiología , Fibrinógeno/química , Fibrinógeno/metabolismo , Fibrinólisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Animales , Células CHO , Cricetulus , Fibrina/química , Humanos , Ratones Noqueados , Proteínas Recombinantes/química
11.
Blood ; 138(2): 107-109, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34264278
12.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183396

RESUMEN

The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Factor XIIIa/metabolismo , Fibrinógeno/metabolismo , Embolia Pulmonar/etiología , Embolia Pulmonar/patología , Vena Cava Inferior/patología , Trombosis de la Vena/complicaciones , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Imagen Óptica , Embolia Pulmonar/sangre , Trombosis de la Vena/sangre
13.
Expert Opin Investig Drugs ; 30(10): 1057-1069, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33682570

RESUMEN

INTRODUCTION: Atrial fibrillation is the most frequently diagnosed cardiac arrhythmia globally and is associated with ischemic stroke and heart failure. Patients with atrial fibrillation are typically prescribed long-term anticoagulants in the form of either vitamin K antagonists or non-vitamin K antagonist oral anticoagulants; however, both carry a potential risk of adverse bleeding. AREAS COVERED: This paper sheds light on emerging anticoagulant agents which target clotting factors XI and XII, or their activated forms - XIa and XIIa, respectively, within the intrinsic coagulation pathway. The authors examined data available on PubMed, Scopus, and the clinical trials registry of the United States National Library of Medicine (www.clinicaltrials.gov). EXPERT OPINION: Therapies targeting factors XI or XII can yield anticoagulant efficacy with the potential to reduce adverse bleeding. Advantages for targeting factor XI or XII include a wider therapeutic window and reduced bleeding. Long-term follow-up studies and a greater understanding of the safety and efficacy are required. Atrial fibrillation is a chronic disease and therefore the development of oral formulations is key.


Asunto(s)
Anticoagulantes/administración & dosificación , Fibrilación Atrial/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control , Administración Oral , Animales , Anticoagulantes/efectos adversos , Anticoagulantes/farmacología , Fibrilación Atrial/complicaciones , Desarrollo de Medicamentos , Hemorragia/inducido químicamente , Humanos , Accidente Cerebrovascular/etiología
14.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397811

RESUMEN

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Asunto(s)
Bradiquinina/metabolismo , Factor IX/metabolismo , Factor XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulación Sanguínea/fisiología , Bradiquinina/química , Calcio/química , Calcio/metabolismo , Cationes Bivalentes , Factor IX/química , Factor XI/química , Factor XI/metabolismo , Factor XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Trombina/química
15.
16.
Thromb Res ; 197: 69-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189061

RESUMEN

INTRODUCTION: Atrial fibrillation (AF) is associated with increased risk of stroke and thromboembolism. Patients with AF have a higher incidence of renal impairment, which may influence the risks of systemic thromboembolism or bleeding. We determined how different oral anticoagulants affect plasma clot properties and whether progressive renal dysfunction affects plasma clot properties in patients on warfarin. MATERIALS AND METHODS: We studied 257 patients with AF receiving oral anticoagulants. Furthermore, we recruited 192 separate patients with AF on warfarin and divided them in 4 groups based on estimated glomerular filtration rate (eGFR). Platelet poor plasma was prepared and clot formation and fibrinolysis was monitored kinetically up to 1 h. RESULTS: Rate of clot formation was significantly slower with dabigatran and rivaroxaban. Time between 50% clotting and 50% lysis was prolonged in patients receiving warfarin compared to NOACs. Time to 50% lysis from maximum absorbance was significantly shorter in patients receiving rivaroxaban. Time between 50% clotting and 50% lysis became significantly prolonged with worsening eGFR. Time to 50% lysis from maximum absorbance was prolonged as renal function worsened. CONCLUSIONS: Compared to warfarin, NOACs differently modulate coagulation and fibrinolysis under ex vivo conditions. Worsening renal function in AF patients on warfarin prolongs fibrinolysis, potentially increasing the risk of thrombosis.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Trombosis , Administración Oral , Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Dabigatrán/uso terapéutico , Humanos , Piridonas/uso terapéutico , Rivaroxabán/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Warfarina/uso terapéutico
17.
Res Pract Thromb Haemost ; 4(8): 1269-1281, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33313466

RESUMEN

BACKGROUND: Abnormal clot structure has been identified in patients with thrombotic disorders. Anticoagulant therapy offers clear benefits for thrombosis prevention and treatment by reducing blood clot formation and size; nevertheless, there are limited data on the effects of different anticoagulants, where clotting is initiated with different triggers, on clot structure. OBJECTIVES: Our aim was to investigate the effects of vitamin K antagonists and factor Xa inhibitors on clot structure. METHODS: Clots from pooled plasma spiked with rivaroxaban, apixaban, or enoxaparin, as well as plasma from patients on warfarin, were compared to plasma without anticoagulation. The kinetic profile of polymerizing clots was obtained by turbidity, fiber density was determined by confocal microscopy, clot pore size was investigated by permeation, and fiber size was analyzed using scanning electron microscopy. Clotting agonist was either tissue factor or thrombin. RESULTS: Following clotting with tissue factor, all anticoagulated clots had a significantly increased lag time, with the exception of enoxaparin. Rivaroxaban additionally led to significantly less dense and more permeable clots, with thicker fibers. In contrast, turbidity analysis following initiation with thrombin showed few effects of anticoagulation, with only enoxaparin leading to a prolonged lag time. Enoxaparin clots made with thrombin were less dense and more permeable. CONCLUSION: Our results show that anticoagulants modulate clot structure particularly when induced by tissue factor, most likely due to reduction of thrombin generation. We propose that the effects of different anticoagulants could be assessed with a global clot structure measurement such as permeation or turbidity, providing information on clot phenotype.

18.
J Med Chem ; 63(21): 12213-12242, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32463237

RESUMEN

Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.


Asunto(s)
Inhibidores de Agregación Plaquetaria/uso terapéutico , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/tratamiento farmacológico , Sitios de Unión , Productos Biológicos/química , Productos Biológicos/metabolismo , Humanos , Ligandos , Losartán/análogos & derivados , Losartán/metabolismo , Losartán/uso terapéutico , Simulación de Dinámica Molecular , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Glicoproteínas de Membrana Plaquetaria/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Trombosis/patología
19.
FEBS J ; 287(3): 452-464, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31407850

RESUMEN

Factor XIIIA (FXIIIA) is a transglutaminase that cross-links intra- and extracellular protein substrates. FXIIIA is expressed as an inactive zymogen, and during blood coagulation, it is activated by removal of an activation peptide by the protease thrombin. No such proteolytic FXIIIA activation is known to occur in other tissues or the intracellular form of FXIIIA. For those locations, FXIIIA is assumed instead to undergo activation by Ca2+ ions. Previously, we demonstrated a monomeric state for active FXIIIA. Current analytical ultracentrifugation and kinetic experiments revealed that thrombin-activated FXIIIA has a higher conformational flexibility and a stronger affinity toward glutamine substrate than does nonproteolytically activated FXIIIA. The proteolytic activation of FXIIIA was further investigated in a context of fibrin clotting. In a series of fibrin cross-linking assays and scanning electron microscopy studies of plasma clots, the activation rates of FXIIIA V34X variants were correlated with the extent of fibrin cross-linking and incorporation of nonfibrous protein into the clot. Overall, the results suggest conformational and functional differences between active FXIIIA forms, thus expanding the understanding of FXIIIA function. Those differences may serve as a basis for developing therapeutic strategies to target FXIIIA in different physiological environments. ENZYMES: Factor XIIIA ( EC 2.3.2.13).


Asunto(s)
Coagulación Sanguínea , Factor XIIIa/metabolismo , Fibrina/metabolismo , Proteolisis , Calcio/metabolismo , Factor XIIIa/química , Humanos , Cinética , Trombina/metabolismo
20.
Sci Rep ; 9(1): 11324, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383913

RESUMEN

The dimeric FXIII-A2, a pro-transglutaminase is the catalytic part of the heterotetrameric coagulation FXIII-A2B2 complex that upon activation by calcium binding/thrombin cleavage covalently cross-links preformed fibrin clots protecting them from premature fibrinolysis. Our study characterizes the recently disclosed three calcium binding sites of FXIII-A concerning evolution, mutual crosstalk, thermodynamic activation profile, substrate binding, and interaction with other similarly charged ions. We demonstrate unique structural aspects within FXIII-A calcium binding sites that give rise to functional differences making FXIII unique from other transglutaminases. The first calcium binding site showed an antagonistic relationship towards the other two. The thermodynamic profile of calcium/thrombin-induced FXIII-A activation explains the role of bulk solvent in transitioning its zymogenic dimeric form to an activated monomeric form. We also explain the indirect effect of solvent ion concentration on FXIII-A activation. Our study suggests FXIII-A calcium binding sites could be putative pharmacologically targetable regions.


Asunto(s)
Calcio/metabolismo , Activación Enzimática , Factor XIII/metabolismo , Sitios de Unión , Factor XIII/química , Factor XIIIa/química , Factor XIIIa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...